Simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms

نویسنده

  • Yan Bai
چکیده

In the paper, we mainly study ergodicity of adaptive MCMC algorithms. Assume that under some regular conditions about target distributions, all the MCMC samplers in {Pγ : γ ∈ Y} simultaneously satisfy a group of drift conditions, and have the uniform small set C in the sense of the m-step transition such that each MCMC sampler converges to target at a polynomial rate. We say that the family {Pγ : γ ∈ Y} is simultaneously polynomially ergodic. Suppose that Diminishing Adaptation and simultaneous polynomial ergodicity hold. We find that either when the number of drift conditions is greater than or equal to two, or when the number of drift conditions having some specific form is one, the adaptive MCMC algorithm is ergodic. We also discuss some recent results related to this topic, and show that under some additional condition, Containment is necessary for ergodicity of adaptive MCMC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Adaptive Markov Chain Monte Carlo Algorithms

In the thesis, we study ergodicity of adaptive Markov Chain Monte Carlo methods (MCMC) based on two conditions (Diminishing Adaptation and Containment which together imply ergodicity), explain the advantages of adaptive MCMC, and apply the theoretical result for some applications. First we show several facts: 1. Diminishing Adaptation alone may not guarantee ergodicity; 2. Containment is not ne...

متن کامل

Markov Chain Monte Carlo Algorithms: Theory and Practice

We describe the importance and widespread use of Markov chain Monte Carlo (MCMC) algorithms, with an emphasis on the roles in which theoretical analysis can help with their practical implementation. In particular, we discuss how to achieve rigorous quantitative bounds on convergence to stationarity using the coupling method together with drift and minorisation conditions. We also discuss recent...

متن کامل

Explicit control of subgeometric ergodicity

This paper discusses explicit quantitative bounds on the convergence rates of Markov chains on general state spaces, under so-called drift and minorization conditions. The focus of this paper is on practical conditions that lead to subgeometric rates. Such explicit bounds are particularly relevant in applications where a family of Markov transition probabilities {Pθ : θ ∈ Θ} is considered and f...

متن کامل

Ergodicity of Adaptive MCMC and its Applications by Chao Yang

Ergodicity of Adaptive MCMC and its Applications Chao Yang Doctor of Philosophy Graduate Department of Statistics University of Toronto 2008 Markov chain Monte Carlo algorithms (MCMC) and Adaptive Markov chain Monte Carlo algorithms (AMCMC) are most important methods of approximately sampling from complicated probability distributions and are widely used in statistics, computer science, chemist...

متن کامل

On the Containment Condition for Adaptive Markov Chain Monte Carlo Algorithms

This paper considers ergodicity properties of certain adaptive Markov chain Monte Carlo (MCMC) algorithms for multidimensional target distributions, in particular Adaptive Metropolis and Adaptive Metropoliswithin-Gibbs. It was previously shown by Roberts and Rosenthal (2007) that Diminishing Adaptation and Containment imply ergodicity of adaptive MCMC. We derive various sufficient conditions to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008